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It has been suggested that chemicals and complex mixtures capable of modulating the endocrine
system may contribute to adverse health, reproduction, and developmental effects in humans and
wildlife. These effects include increased incidence of hormone-dependent cancers, compromised
reproductive fitness, and abnormal reproductive system development. In response to public
concern, regulatory agencies in North America and Europe are formulating potential strategies to
systematically test chemicals and complex mixtures for their endocrine-disrupting activities.
Because of the complexity of the endocrine system and the number of potential endocrine
disruptor targets, a tiered approach involving a complementary battery of short- and long-term in
vivo and in vitro assays that assesses both receptor and nonreceptor-mediated mechanisms of
action is being considered. However, the available established assays use a limited number of
end points, and significant information gaps exist for other potential targets in the endocrine
system. In addition to discussing the merits and limitations of the assays that may be adopted,
this paper also highlights potential problems associated with the use of a tiered testing

strategy. — Environ Health Perspect 106(Suppl 2):577-582 (1998).
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Introduction

Epidemiologic studies have found signifi-
cant increases in the incidence of hormone-
dependent diseases including cancers of the
breast, prostate, and testis (/-8). For exam-
ple, the U.S. National Cancer Institute’s
Surveillance Epidemiology and End
Results (SEER) Program reports that newly
diagnosed cases of breast cancer increased
at an annual rate of 1% between 1950 and
1979. This diagnosis rate tripled to 3% per
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year from 1980 to 1984 (9). Glass and
Hoover have shown that the largest
increases in incidence have occurred in
women 60 years of age and older (74%),
and in those 45 to 59 years of age (36%)
(10). In women between 20 to 44 years of
age, the rate has remained essentially
unchanged. Less than one-third of the
overall 15.3% increase in the age-adjusted
rate for invasive breast cancers seen
between 1972 and 1985 could be attrib-
uted to the increased use of screening
mammography (5).

The occurrence of breast cancer has
been associated with affluent societies, and
studies have shown that the rates of occur-
rence can vary by as much as 5- to 10-fold
between countries. Moreover, migrants
who move from low- to high-risk countries
adopt the rates of their new country. There
have also been reports of significant
increases in the incidence of male repro-
ductive tract disorders (e.g., maldescent
[cryptorchidism], urethal abnormalities
[hypospadias]), decreases in semen volume
and sperm counts, and compromised
reproductive fitness in humans and wildlife
(7,11-14). These results suggest that
environmental factors may contribute to

the increased incidence of these adverse

effects (15,16).

This hypothesis is supported by several
paradigms that have shown that the devel-
opment of cancers and the occurrence of
reproductive tract disorders can be influ-
enced by exposure to estrogens or estrogenic
drugs. These include
* experimental studies demonstrating the

ability of sex steroids to promote tumor

development (17-20);

* epidemiologic studies reporting the
protective effect of ovariectomization,
the increased risk of breast cancer in
young women exposed to diethylstilbe-
strol, and the association between
maternal estrogen concentrations and
the frequency of testicular cancer and
cryptorchidism (19,21-23);

* the prevalence of infertility and malfor-
mations of the genitalia in male rodents
exposed prenatally to diethylstilbestrol
(24,25); and

* the efficacy of hormone antagonists in
treating cancers (26,27).
Consequently, it has been suggested

that xenobiotics capable of mimicking or
blocking the activities of sex steroids may
play a role in the etiology of hormone-
dependent cancers and disorders of the
male reproductive tract in humans and
wildlife (12,13,15,28-35).

Exogenous substances that can elicit sex
steroidlike activities are commonly referred
to as endocrine disruptors and have been
defined as any exogenous agent, either syn-
thetic or natural, that interferes with the pro-
duction, release, transport, metabolism,
binding, biologic action, or elimination of
natural ligands in the body that are responsi-
ble for the maintenance of homeostasis and
the regulation of developmental processes. In
many cases, these endocrine disruptors share
no apparent structural similarities to tradi-
tional steroids. Endocrine disruptors include
natural products (phytoestrogens, e.g.,
genistein) (36-38), pharmaceuticals (i.e.,
diethylstilbestrol, ethynyl estradiol) (39),
environmental pollutants (i.e., DDT, poly-
chlorinated biphenyls, dioxins, polyaromatic
hydrocarbons) (40-44), and industrially
relevant chemicals (i.e., alkylphenols, bisphe-
nol A) (45-47). The potential exposure and
economic significance of several of these sub-
stances have made endocrine-disrupting
chemicals a contentious health concern and
environmental issue.

In contrast, several studies suggest that
endocrine disruptors may not significantly
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contribute to the development of hormone-
dependent disease or compromise repro-
ductive fitness in humans. For example,
Wilcox et al. (48) report that men who
were prenatally exposed to diethylstilbestrol
experienced no impairment of fertility based
on the following parameters: incidence of
impregnation, age and birth of first child,
average number of children, diagnosis of fer-
tility problems, and length of time to con-
ception. In addition, no impairment of
sexual function as indicated by the fre-
quency of intercourse or reported episodes
of decreased libido were reported (48).
Consistent with the results of this study,
several recent reports provide evidence refut-
ing the findings that sperm counts and
semen quality have been decreasing
(49-51). Furthermore, women on vegetar-
ian diets who consume large quantities of
natural products with weak estrogenic activ-
ities (e.g., phytoestrogens) have a lower inci-
dence of breast cancer (52,53). This
evidence has led some researchers to suggest
that weak estrogen agonists may function as
antiestrogens in the presence of potent ago-
nists, and therefore, do not contribute to the
development of hormone-dependent
diseases and developmental abnormalities
and may even serve a protective role in some
situations (54-56).

In Vivo Assessment
of Endocrine Disruptors

As suggested by the endocrine disruptor
definition, there are a number of potential
mechanisms of action that may be suscepti-
ble to the adverse effects of endocrine dis-
ruptors. This diversity of potential targets
and the complexity of feedback mechanisms
significantly complicates evaluating the con-
sequences of exposure to endocrine disrup-
tors. Fortunately, many of the functions and
mechanisms of the endocrine system are
conserved among species, thereby providing
scientists methodologies, initially developed
for clinical medicine and drug discovery or
evaluation, to investigate the activities of
endocrine disruptors. A compendium listing
the assays currently used to test for the
estrogenic activities of a substance or com-
plex mixture has recently been compiled
(57). Several of these tests (e.g., enzyme
induction, cell differentiation, effects on
organ weights) take advantage of the recep-
tor-mediated mechanism of action of sex
steroids. The advantages and disadvantages
of some of these in vitro and in vivo assays as
well as emerging methodologies have
recently been reviewed (58,59). Endocrine
disruptors also elicit effects through
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receptor-independent mechanisms that may
involve steroid transport (i.e., hormone-
binding globulins) (60,61), steroid synthesis
(i.e., inhibition of aromatase activity) (62),
or interactions with target cell membranes
(63,64). Therefore, a comprehensive evalu-
ation of an endocrine disruptor requires a
battery of complementary iz vitro and in
vivo assays that are based on receptor- and
nonreceptor-mediated mechanisms.

There are a limited number of short-
term, established iz vivo assays that could
be used to assess endocrine disruptors.
However, it is questionable whether these
assays alone can accurately identify and
assess chemicals, natural products, environ-
mental pollutants, and complex mixtures
alleged to possess endocrine-disrupting
activities. For example, two classical assays,
namely the uterotrophic and vaginal cell
cornification assays, are the most widely
used in vivo assays for assessing estrogenic
substances (58,65-70). Increases in uterine
wet weight is an established measure of the
estrogenicity of a compound and is the
hallmark for the definition of an estrogen
or the identification of an estrogenic sub-
stance (66,71). Previous studies examining
the effects of estrogenic substances on uter-
ine wet weight have used a number of dif-
ferent protocols and species; therefore,
uterotrophic assays require standardized
operating procedures that specify species,
strain, age, and route of test compound
administration in addition to other poten-
tial interventions (i.e., ovariectomy). For
example, it has been reported that there are
marked species differences in responsive-
ness and that the mouse uterus is much
more sensitive to estrogens than the rat
(66). In addition, although studies suggest
that the uterotrophic assay exhibits greater
sensitivity in immature, ovariectomized
animals (69,72), the uterus also responds
to progesterone, testosterone, and other
agents that are not characteristically estro-
genic, which can lead to confounding
results (73-77).

In contrast, vaginal epithelial cell corni-
fication in ovariectomized rodents can be
induced only by compounds considered to
be estrogenic. It is believed to be a defini-
tive n vivo test for identifying estrogenic
substances or complex mixtures (78).
Although the assay has the advantage of
being relatively simple and can use the same
animals repeatedly provided the test com-
pound does not bioaccumulate, it has been
criticized as being largely qualitative as scor-
ing is dependent on the evaluation of cellu-
lar contents of a vaginal lavage. In addition,

the assay requires large numbers of animals
to ensure accurate results (66,68). The
qualitative nature of the assay has been
somewhat addressed by introducing a grad-
ing system that involves scoring the degree
of cornification using the disappearance of
leukocytes and the appearance of cornified
squamous cells (79).

There has also been some concern that
short-term rodent assays may not possess
sufficient sensitivity to identify substances
and complex mixtures with weak or specific
endocrine-disrupting activities. It is conceiv-
able that endocrine disruptors may elicit
responses at the gene expression level that
may not be translated into immediate
responses at the organ or tissue level but
could subsequently predispose an individual
or subpopulation to adverse effects at later
stages of development. Assessment of
endocrine disruptors is further complicated
by the fact that many substances elicit
species-, tissue-, cell-, and response-specific
effects. For example, some estrogens are
more effective for imbibition of uterine
fluid, whereas others are more active in the
promotion of uterine growth. Moreover,
superior efficacy for one response does not
indicate that the same rank order of potency
will be exhibited for a different response
(66). Another example is tamoxifen, which
exhibits antiestrogenic activity in the breast
and agonist activities in the uterus. These
examples demonstrate the necessity of mea-
suring a number of different end points in
order to comprehensively evaluate the
potential endocrine-disrupting activities of a
substance or complex mixture.

The appropriateness of using rodents as
models to assess the risk that endocrine dis-
ruptors pose to human and wildlife health
has also been questioned as rodents do not
express sex hormone-binding globulin
(SHBG) following parturition. SHBG is a
17B-estradiol-inducible circulating serum
protein that exhibits significant changes in
expression levels during development in all
vertebrate species and is a major determi-
nant of the metabolic clearance and the
bioavailability of sex steroids (60,80,81).
In addition, specific receptors for SHBG
and ligand-bound SHBG have been identi-
fied in prostatic, placental, endometrial,
and breast cells (82-91) that may be
involved in a cAMP-dependent signaling
pathway that induces cell growth (92-95).
Intracellular SHBG has also been identified
in these tissues, suggesting a physiologic
function for this protein in cellular sex
steroid uptake (88,90). Although it is
unclear if endocrine disruptor interaction
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with SHBG plays a role in eliciting adverse
effects, it is known that humans and some
wildlife species express SHBG after parturi-
tion. Therefore, SHBG may be a potential
target or protective measure against endo-
crine disruption that to date has not been
adequately considered.

In Vitro Assays for Endocrine
Disruptors

A number of #n vitro assays are also based
on known mechanisms of action of sex
steroids. These include

* measuring the activity of enzymes

involved in steroid synthesis (62,96,97);
* competitive ligand binding assays using

binding globulins (61,98,99) and

receptors (43,59,100);

* cell proliferation assays (101-104); and
* gene expression assays in mammalian

cells and yeast (59,105-110).

However, many of these assays lack
standardized operating procedures with
suggested performance guidelines based on
appropriate controls and proficiency sam-
ples. This is critical as in vitro assay perfor-
mance can be fickle because of differences
in media formulations, serum source, and
cell line strains (59,111).

In addition, the ability to predict
responses in vivo is questionable as it is not
possible to accurately reproduce the in vivo
pharmacokinetic and pharmacodynamic
interactions in #n vitro assays. For example,

in vitro assays do not possess the same meta--

bolic capabilities present in vivo and there-
fore may generate false positive results due
to the inability to metabolically inactivate
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an estrogenic substance. This has been
observed with selected phthalate esters that
were found to induce weak estrogen recep-
tor-mediated effects in vitro (112,113) but
did not elicit a response in vivo, as evi-
denced by uterotrophic and vaginal corni-
fication assays (113). Potentially more
problematic are false negative results that
are due to the inability of in vitro systems
to bioactivate a proestrogen to its estro-
genic metabolite. However, several in vitro
systems possess some metabolic capabilities
and, to date, there have been no reported
examples of in vitro assays generating false
negative results even with endocrine dis-
ruptors that are known to require bioacti-
vation (i.e., methoxychlor, polychlorinated
biphenyls) (41).

Summary

To comprehensively assess the potential
endocrine disrupting activities of a sub-
stance or complex mixture, it is essential
that a complementary battery of in vitro
and in vivo assays be used. This battery
could involve a tiered strategy consisting
of computational models such as quan-
titative structure—activity relationship
(QSAR), paradigms, in vitro assays and
short-term in vivo assays in tier I, longer
term iz vivo assays in tier II, and if neces-
sary, mulitigenerational studies in tier III.
In this scheme, subsequent tier testing
would be triggered following a review of
the results obtained in the preceding tier.
Uncertainties in this strategy arise when
determining what constitutes sufficient
data to warrant further testing. For example,

there is no doubt that endocrine disrup-
tion in short-term in vivo studies in tier I
would provide sufficient evidence to war-
rant further testing in tier II. However, the
course of action may be less clear when
there is a lack of an effect in vivo, but a
response is observed using ¢ vitro assays as
well as positive predictions of endocrine-
disrupting activities from QSAR models.
Therefore, it may be prudent to establish
guidelines that outline criteria which
essentially exculpate a chemical or com-
plex mixture that is suspected of eliciting
endocrine-disrupting activities, in order to
avoid a futile testing loop.

It is also clear that further research is
required for the development of new in
vitro and in vivo assays. Currently, there are
inadequate in vitro and in vivo testing
methodologies for several known potential
targets such as the thyroid and androgen
receptor systems. Moreover, there is a
complete lack of knowledge regarding the
impact of endocrine disruptors on other
potential endocrine targets and mechanisms
of action, including crosstalk between
membrane-bound and nuclear receptors
(114-117), the roles of new (118,119) and
orphan receptors (120-122), and the effect
on growth factor-mediated signal transduc-
tion. Needless to say, prior to the incorpora-
tion of any of these assays into a screening
protocol, they should be subjected to a rig-
orous evaluation to determine their advan-
tages and limitations, as well as to define
how this information will be used in risk
assessment and regulatory arenas.
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